1,三角形怎么算等于平方

如果是求面积那么s=底*高/2如果是说边之间的关系,那么当是直角三角形时满足=c^2=a^2+b^2 a,b,c是三角形三条边,c是斜边
三角形加三角形等于三角形乘三角形,三角形等于0或2;0+0=0*0=0,2+2=2*2=4。
三角形面积=底×高÷2面积单位用平方表示

2,三角形的面积怎么算的

留着备用。望采纳谢谢1、正方形 2、 正方体C周长 S面积 a边长 V:体积 a:棱长周长=边长×4 表面积=棱长×棱长×6C=4a S表=a×a×6面积=边长×边长 体积=棱长×棱长×棱长S=a×a V=a×a×a3 、长方形 4 、长方体C周长 S面积 a边长 V:体积 s:面积 a:长 b: 宽 h:高周长=(长+宽)×2 (1)表面积(长×宽+长×高+宽×高)×2C=2(a+b) S=2(ab+ah+bh)面积=长×宽 (2)体积=长×宽×高S=ab V=abh5 、三角形 6 、平行四边形s面积 a底 h高 s面积 a底 h高面积=底×高÷2 面积=底×高s=ah÷2 s=ah三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 7、 梯形 8、 圆形s面积 a上底 b下底 h高 S面积 C周长 ∏ d=直径 r=半径面积=(上底+下底)×高÷2 (1)周长=直径×∏=2×∏×半径s=(a+b)× h÷2 C=∏d=2∏r (2)面积=半径×半径×∏9、 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
a的平方
三角形的面积等于底乘高除以2。

3,三角形面积公式

三角形的面积公式 (1)S△=1/2ah (a是三角形的底,h是底所对应的高) (2)S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数) (3)S△=√〔p(p-a)(p-b)(p-c)〕 〔p=1/2(a+b+c)〕(海伦—秦九韶公式) (4)S△=abc/(4R) (R是外接圆半径) (5)S△=1/2(a+b+c)r (r是内切圆半径) (6) ........... | a b 1 | S△=1/2 | c d 1 | ............| e f 1 | 〔| a b 1 | ....| c d 1 | ....| e f 1 |为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但只要取绝对值就可以了,不会影响三角形面积的大小〕 (7)S△=c^2sinAsinB/2sin(A+B) =(1/2)*底*高 s=(1/2)*a*b*sinC (C为a,b的夹角)底*高/2底X高除2 二分之一的 (两边的长度X夹角的正弦)s=1/2的周长*内切圆半径s=(1/2)*底*高 s=(1/2)*a*b*sinC 两边之和大于第三边,两边之差小于第三边 大角对大边 周长c=三边之和a+b+c 面积 s=1/2ah(底*高/2) s=1/2absinC(两边与夹角正弦乘积的一半) s=1/2acsinB s=1/2bcsinA s=根号下:p(p-a)(p-b)(p-c) 其中p=1/2(a+b+c) 这个公式叫海伦公式 正弦定理: sinA/a=sinB/b=sinc/C 余弦定理: a^2=b^2+c^2-2bc cosA b^2=a^2+c^2-2ac cosB c^2=a^2+b^2-2ab cosA三角形2条边向加大于第三边. 三角形面积=底*高/2 三角形内角和=180度求面积吗 (上底+下底)×高÷2三角形面积=底*高/2三角形面积公式: 底*高/2 三角形的内角和是180度
三角形面积公式公式描述:公式中a为三角形的底,h为底所对应的高。三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。扩展资料性质1 、在平面上三角形的内角和等于180°(内角和定理)。2 、在平面上三角形的外角和等于360° (外角和定理)。3、 在平面上三角形的外角等于与其不相邻的两个内角之和。推论:三角形的一个外角大于任何一个和它不相邻的内角。4、 一个三角形的三个内角中最少有两个锐角。5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2 ,那么这个三角形是直角三角形。9、直角三角形斜边的中线等于斜边的一半。10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。参考资料来源:百度百科—三角形面积公式
三角形面积公式:(1)已知三角形底a,高h,则:S=ah/2。(2)已知三角形三边a,b,c,则:p=(a+b+c)/2;S=sqrt[p(p-a)(p-b)(p-c)];=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)];=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]。(3)已知三角形两边a,b,这两边夹角C,则:S=1/2 absinC,即两夹边之积乘夹角的正弦值。(4)设三角形三边分别为a、b、c,内切圆半径为r,则:S=(a+b+c)r/2。(5)设三角形三边分别为a、b、c,外接圆半径为R,则:S=abc/4R。扩展资料:三角形的判定:按角分1、锐角三角形:三角形的三个内角中最大角小于90度。2、直角三角形:三角形的三个内角中最大角等于90度。3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。其中锐角三角形和钝角三角形统称为斜三角形。按边分1、不等边三角形;不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形。2、等腰三角形;等腰三角形(isosceles triangle),指两边相等的三角形,相等的两个边称为这个三角形的腰。3、等边三角形。等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。参考资料来源:搜狗百科—三角形
三角形的面积公式 (1)S△=1/2ah (a是三角形的底,h是底所对应的高) (2)S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数) (3)S△=√〔p(p-a)(p-b)(p-c)〕 〔p=1/2(a+b+c)〕(海伦—秦九韶公式) (4)S△=abc/(4R) (R是外接圆半径) (5)S△=1/2(a+b+c)r (r是内切圆半径) (6) ........... | a b 1 | S△=1/2 | c d 1 | ............| e f 1 | 〔| a b 1 | ....| c d 1 | ....| e f 1 |为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但只要取绝对值就可以了,不会影响三角形面积的大小〕 (7)S△=c^2sinAsinB/2sin(A+B) =(1/2)*底*高 s=(1/2)*a*b*sinC (C为a,b的夹角)底*高/2底X高除2 二分之一的 (两边的长度X夹角的正弦)s=1/2的周长*内切圆半径s=(1/2)*底*高 s=(1/2)*a*b*sinC 两边之和大于第三边,两边之差小于第三边 大角对大边 周长c=三边之和a+b+c 面积 s=1/2ah(底*高/2) s=1/2absinC(两边与夹角正弦乘积的一半) s=1/2acsinB s=1/2bcsinA s=根号下:p(p-a)(p-b)(p-c) 其中p=1/2(a+b+c) 这个公式叫海伦公式 正弦定理: sinA/a=sinB/b=sinc/C 余弦定理: a^2=b^2+c^2-2bc cosA b^2=a^2+c^2-2ac cosB c^2=a^2+b^2-2ab cosA三角形2条边向加大于第三边. 三角形面积=底*高/2 三角形内角和=180度求面积吗 (上底+下底)×高÷2三角形面积=底*高/2三角形面积公式: 底*高/2 三角形的内角和是180度
长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环 R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 椭圆 D-长轴 d-短轴 S=πDd/4 立方图形 名称 符号 面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3 拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)